A Novel Solution to the Frenet-Serret Equations

نویسنده

  • Anthony A. Ruffa
چکیده

A set of equations is developed to describe a curve in space given the curvature κ and the angle of rotation θ of the osculating plane. The set of equations has a solution (in terms of κ and θ) that indirectly solves the Frenet-Serret equations, with a unique value of θ for each specified value of τ . Explicit solutions can be generated for constant θ. The equations break down when the tangent vector aligns to one of the unit coordinate vectors, requiring a reorientation of the local coordinate system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 01 11 01 4 v 2 1 5 M ar 2 00 2 Hamiltonian Frenet - Serret dynamics

The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher-derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant ...

متن کامل

On the differential geometry of curves in Minkowski space

We discuss some aspects of the differential geometry of curves in Minkowski space. We establish the Serret-Frenet equations in Minkowski space and use them to give a very simple proof of the fundamental theorem of curves in Minkowski space. We also state and prove two other theorems which represent Minkowskian versions of a very known theorem of the differential geometry of curves in tridimensi...

متن کامل

On Frenet-Serret Invariants of Non-Null Curves in Lorentzian Space L5

The aim of this paper is to determine Frenet-Serret invariants of non-null curves in Lorentzian 5-space. First, we define a vector product of four vectors, by this way, we present a method to calculate Frenet-Serret invariants of the non-null curves. Additionally, an algebraic example of presented method is illustrated. Keywords—Lorentzian 5-space; Frenet-Serret Invariants; Nonnull Curves.

متن کامل

Using Geometric Algebra for Visualizing Integral Curves

The Differential Geometry of curves is described by means of the Frenet-Serret formulas, which cast first, second and third order derivatives into curvature and torsion. While in usual vector calculus these quantities are usually considered to be scalar values, formulating the Frenet-Serret equations in the framework of Geometric Algebra exhibits that they are best described by a bivector for t...

متن کامل

Characterisation of Frenet-Serret and Bishop motions with applications to needle steering

Frenet-Serret and Bishop rigid-body motions have many potential applications in robotics, graphics and computer aided design. In order to study these motions new characterisations in terms of their velocity twists are derived. This is extended to general motions based on any moving frame to a space curve. Further it is shown that any such general moving frame motion is the product of a Frenet-S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008